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Abstract

We investigate the problem of learning to predict moves in the board
game of Go from game records of expert players. In particular, we ob-
tain a probability distribution for professional play over legal moves in a
given position. This distribution has numerous applications in computer
Go, among them serving as a) an efficient stand-alone Go player, b) a
move selector/sorter for game tree search and c) a training tool for Go
players.
Our method comprises two major components: a) a pattern extraction
scheme for efficiently harvesting patterns of given size and shape from
expert game records and b) a Bayesian learning algorithm that learns a
distribution over the values of a move given a board position based on
the local pattern context. The system is trained on 20,000 expert games
and shows excellent prediction performance as indicated by its ability
to predict the moves made by professional Go players in 26% of test
positions.

1 Introduction

Go is an ancient oriental board game of two players, ‘Black’ and ‘White’.1 The players
take turns to place stones on the intersections of a grid with the aim of making territory by
surrounding areas of the board. All the stones of each player are identical. Once placed, a
stone is not moved but may be captured (by being surrounded with opponent stones). The
resulting game is very complex and challenging. See Figure 1 for a typical Go position.

Many legal moves are usually available and it is difficult to statically estimate the value
of a position. The ensuing defeat of Minimax search forces the pursuit of alternative ap-
proaches. Go has emerged as a major challenge for AI with the best computer Go programs
currently playing at the level of weak amateur human players (contrast with the state of
computer chess). Global search is typically replaced with a hybrid of local (goal-based)
search, pattern matching and territory estimation. The most successful attempts to date
have been knowledge intensive and require the management of complex board representa-
tions [2].

1A great deal of information about Go can be found at http://www.gobase.org.
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The complexity of Go results in uncertainty about the future course and outcome of the
game. Our research aims at modelling and managing this uncertainty using probability in
a Bayesian sense (see also our earlier work [9]). Here we focus on the task of predicting
moves made by expert Go players. In particular we wish to obtain a probability distribution
over legal moves from a given board configuration. Such a distribution is useful for a)
providing a stand-alone Go player that plays the moves of maximum probability, b) for
move selection/sorting before performing more expensive analysis, c) as a study tool for
Go. Go players frequently make moves which create known local shapes or satisfy other
local criteria. We take advantage of this locality by matching patterns of stones centered on
potential moves.

Existing Go programs use pattern matching on local configurations of stones for various
purposes ranging from opening books (similar to chess) to the analysis of connectivity,
life&death and territory [2]. Often, patterns may contain “don’t care” points (GnuGo) or
carry context-information such as the number of liberties of constituent chains [5]. Typ-
ically, the patterns are handcrafted (e.g., GnuGo) or constructed using search techniques
[6]. Some attempts have been made at learning patterns from expert game records (e.g.
from 2000 games in [3]), or learning to predict expert moves from various features using a
neural network trained on expert games (e.g., on 25,000 moves∼100 games in [10]).

Inspired by Frank de Groot’s pattern system Moyogo Studio [7] we take these earlier ap-
proaches to a new level by focusing on exact local patterns for move prediction. This
restriction allows us to match the patterns very efficiently, thus enabling us to train our sys-
tem on tenths of thousands of games and generating moves for play very quickly. We define
a pattern as an exact arrangement of stones within a sub-region of the board, centered on an
empty location where a move is to be made. We choose our pattern templates as a nested
sequence of increasing size so as to be able to use large patterns with greater predictive
power when possible, but to be able to match smaller patterns when necessary. We auto-
matically generate and label the patterns in two distinct processes, harvesting sufficiently
frequent patterns from game records and learning a ranking of the patterns. Our proba-
bilistic model is based on the idea that an expert in a given board configuration chooses
the move-pattern that maximises a latent score. Each board configuration contains a subset
of the harvested move-patterns of which the expert chooses one and thus indicates that its
latent score is greater than that of the other move-patterns present. It is this information
together with the fact that typical move-patterns occur in more than one position that allows
the system to learn a global ranking among move-patterns—and thus to generalise across
specific positions—assisted by the power of Bayesian inference.

In Section 2 we describe the process by which we automatically harvest over one million
such patterns from records of expert games. In Section 3 we describe our Bayesian ranking
model and the resulting method for training the move predictor from observed moves.
Section 4 covers experimental results and Section 5 presents some further discussion.

2 Pattern representation, matching, and harvesting

Board and pattern representation We represent the Go board as a lattice
�
:=

{1, . . . , N}2 where N is the board size and is usually 9 or 19. In order to represent pat-
terns that extend across the edge of the board in a unified way, we expand the board lattice
to include the off-board areas. The extended board lattice is2 ˆ� := {Ev+ E1 : Ev ∈ �

, E1 ∈ � }
where the offset vectors are given by � := {−(N − 1), . . . , (N − 1)}2. We define a set
of “colours” � := {b, w, e, o} (black, white, empty, off). Then a board configuration is
given by a colouring function c : ˆ

�
→ � and we fix the position for off-board vertices,

2We will use the notation Ev := (vx , vy) to represent 2-dimensional vertex vectors.
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Figure 1: Left: Shown is a screenshot of the pattern system showing a board configuration
from an expert game. The area of the black squares indicates for each vertex the probability
of being the next black expert move under the model. In the top left corner pattern template
T5 is shown centred about the lower 2-4 point of that corner. Right: The sequence of nested
pattern templates Tα with α ∈ {1, . . . , 8}. Note that T8 extends beyond the plot as indicated
by “+”. These are the same pattern templates as used by de Groot in his Moyogo System
[7].

∀Ev ∈ ˆ
�
\

�
: c(Ev) = o.

Our analysis is based on a fixed set � of pattern templates T ⊆ � on which we define a
set 5 of patterns π : T → � that will be used to represent moves made in a given local
context. The patterns have the following properties (see Figure 1) :

1. The pattern templates T are rotation and mirror symmetric with regard to their
origin, i.e., we have that Ev ∈ T ⇒ (−vx , vy) ∈ T and (vy,−vx ) ∈ T , thus
displaying an 8-fold symmetry.

2. Any two pattern templates T, T ′ ∈ � satisfy that either T ⊂ T ′ or T ′ ⊂ T . For
convenience, we index the templates T ∈ � with the conventation that α < β

implies Tα ⊂ Tβ , resulting in a nested sequence (see Figure 1 (right)).

3. We have π(E0) = e for all patterns because each pattern is to represent a legal move
the centre point must be empty .

4. The set of patterns 5 is closed under rotation, mirroring and colour reversal, i.e.,
if π ∈ 5 and π ′ is such that it can be generated from π by any of these transfor-
mations then π ′ ∈ 5. In this case, π and π ′ are considered equivalent, π ∼ π ′,
and we define a set 5̃ of equivalence classes π̃n ⊂ 5.3

We say that a pattern π ∈ 5 matches configuiration c at vertex Ev if for all E1 ∈ T (π) we
have c(Ev + E1) = π( E1). Note that T (π) is the template for the pattern π . We say that
pattern class π̃ ∈ 5̃ matches configuration c at vertex Ev if one of its constituent patterns
π ∈ π̃ matches c at Ev.

3Note that 5̃ is a partition of 5 and thus mutually exclusive,
⋂

π̃∈5̃ π̃n = ∅, and exhaustive,
⋃

π̃∈5̃ π̃n = 5.
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Bayesian Ranking
Werf et al. (2002) Figure 2: Cumulative distribution of the

ranks the Bayesian ranking system as-
signs to the moves played by expert play-
ers. The Bayesian system was tested on
500 as yet unseen expert games. For
comparison, we also show the corre-
sponding curve from [10], which was ob-
tained on 50 games from the same col-
lection (on which we did not test our sys-
tem because they were a subset of our
training set).

Pattern matching and storing We do not use an explicit representation of the patterns
but define a hash key for patterns and store their properties in a hash table. We use a variant
of Zobrist hashing [11], which has the advantage that it can be updated incrementally. We
generate four sets of 64 bit random numbers, ha : ˆ

�
→ {0, . . . , 264 − 1}, a ∈ � , four

for each vertex in the extended Go lattice ˆ
�

. The hash-key of a given pattern π can be
calculated by XORing together the corresponding random numbers,

k (π) :=
⊕

E1∈T (π)

h
π

(

E1
) .

Both adding a stone and removing a stone of colour a ∈ {b, w} at position E1 correspond
to the same operation k ← k ⊕ ha . From the commutativity of XOR it is clear that the
hash-key can be calculated incrementally as stones are added or removed from a pattern.
However, we would like to store the pattern classes π̃ instead of single patterns π to take
account of the relevant symmetries. This is achieved by choosing k̃(π̃ ) := minπ∈π̃ k (π),
i.e., by calculating the hash-key for every symmetry variant of the pattern and choosing
the minimum of those hash-keys. The resulting hash-table allows us to store and retrieve
information associated with each pattern without an explicit representation of the pattern
itself. This could be the game-record the move was found in or relevant statistics.

Pattern harvesting From a database of Go game records we harvest pattern classes π̃

corresponding to moves made by expert players. We let the computer play through each of
the games in the collection and maintain a | � |× | ˆ� |-table H of hash-keys corresponding to
each of the pattern templates T at each of the vertices Ev ∈ ˆ

�
. The update after each move

makes sure that if pattern class π̃ matches the resulting configuration c at vertex Ev then
Hα,Ev = k̃(π̃). Whenever an entry in H changes, the new hash-key can be used to mark that
pattern as being present in the collection.

A rough estimate shows that for 20, 000 game records with an average length of 250 moves
and | � | = 8 different pattern templates we have at most 40 million patterns at our disposal.
To limit storage requirements and to ensure generalisation to as yet unseen positions we
only want to include in 5 those patterns that appear as a move twice in the collection. We
use a Bloom filter [1] B to mark off patterns that have been seen at least once. For every
pattern we observe we use B to check if it is new; if not, it is added to B. If B indicates
that the pattern has been seen before we increment the count in our pattern hash-table D

5̃

that represents 5̃.
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3 Bayesian Pattern Ranking

Model We now present our model of the probability P(Ev|c) of an expert Go player mak-
ing a move (at vertex) Ev ∈

�
in board configuration c. We only consider legal moves

Ev ∈ � (c), where � (c) ⊆
�

is the set of legal moves in configuration c.

A move at Ev in configuration c is represented by the largest pattern class π̃max(Ev, c) ∈
5 that matches c at Ev. In our Bayesian model, we use a Gaussian belief p(s) =�

(s;µ, diag(σ 2)) over scores s(π̃ ) of pattern classes π̃ . Then the predictive distribution
is given by P(Ev|c) =

∫

P(Ev|c, s)p(s) ds (see Figure 1a) for an illustration). Our likelihood
model, P(Ev|c, s), is defined via the notion of a latent, unobserved score x(π̃) for each pat-
tern class, where p(x |s) =

�
(x; s, β2) is also assumed to be Gaussian with mean s and a

fixed variance β2; the value of β expresses the variability of the score depending on specific
position and player characteristics. In this sense, β can also be related to the consistency
of play and could be chosen smaller for stronger players. We assume that the expert makes
the move with the highest latent score value, hence,

P (Ev|c, s) := P
(

∀Ev′ ∈ � (c) \ v : x (π̃max (Ev, c)) > x
(

π̃max
(

Ev′, c
)))

= P
(

AT
Ev,cx ≥ 0

∣

∣

∣
s
)

, (1)

where the matrix AEv,c has | � (c)|− 1 many columns each of which contains+1 for the row
indexed by pattern πmax(Ev, c) and −1 for the row indexed by pattern πmax(Ev

′, c). As an
example, consider | � (c)| = 5 legal moves, 5 patterns and the winning pattern be the third
pattern, in which case we would have

AEv,c :=











−1 0 0 0
0 −1 0 0
1 1 1 1
0 0 −1 0
0 0 0 −1











.

The probability in (1) is the mass in the positive orthant of a (non-diagonal) Gaussian with
mean AT

Ev,cs and covariance β2AT
Ev,cAEv,c. This probability can be efficiently approximated

by expectation propagation (EP) [8] using a Gaussian prior
�

(z;AT
Ev,cs, β2AT

Ev,cAEv,c) and
| � (c)| − 1 factors ti(z) = � zi>0.4

Learning and inference The goal of learning is to determine the parameters µ and σ
2

of the belief distribution p(s) =
�

(s;µ, diag(σ 2)) from training data . The Bayesian
posterior is given by

p (s|Ev, c) =
P (Ev|c, s) p (s)

P (Ev|c)
∝

∫ � (

z;AT
Ev,cs, β2AT

Ev,cAEv,c

) � (

s;µ, diag
(

σ
2
))

dz .

In general, this posterior is no longer a Gaussian and has non-zero covariance. We use
the assumed density filtering [8] approach where we seek the best (diagonal) Gaussian ap-
proximation q(s|Ev, c) to the posterior p(s|Ev, c) in the sense of minimum Kullback-Leibler
divergence. This requires computing the mean and covariance of the truncated Gaussian
(1) which is efficiently approximated using EP. Once a move at vertex Ev at configuration c
has been incoroporated into the prior p(s), the posterior p(s|Ev, c) is used as the prior for
the next expert move at the new board configuration.5

4For details, please note that the classification Bayes point machine algorithm in [8] is exactly
computing the required approximation if the data points are chosen such that the version space is the
positive orthant.

5The numerical details of the specific ADF/EP procedure are beyond the scope of this paper and
will be presented elsewhere.
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Figure 3: Test performance (on 500 games) in relation to phase of the game and pattern
size. Left: Box plot of the rank error for different phases of the game, each phase cor-
responding to an interval of 30 moves. The rank error is the fraction of the rank of the
professional move assigned by the algorithm over the number of legal moves. Centre:
Series of histograms of the relative frequencies of pattern size for different phases of the
game. Right: Box plot of the rank error for different pattern sizes α ∈ {1, . . . , 8}.

4 Experiments and Results

Patterns were harvested (see Section 2) from a training set of 22,000 Go games between
professional Go players6. Starting from prior values µ = 0 and σ = 1 the values of µi and
σi for each pattern were learnt (see Section 3) from the same training set. Each move was
represented by the largest pattern matched for each move. For the purpose of testing we
ranked all the moves played in 500 separate expert Go games (again from GoGod) by again
matching the largest pattern for every possible move and ranking the moves according to
the µ values for the corrsponding patterns.

Figure 2 shows that the Bayesian ranking system ranks 26% of all expert moves first, 55%
in the top 5, 68% in the top 10, and 81% in the top 20. The graph illustrates that we
have improved on the performance of [10] despite the fact that we use local stone patterns
only, while [10] use a number of features including stone configuration, ko activity, liberty
counts, capture information, and nearby stones. In particular, it should be noted that they
use the feature “distance to previous opponent move”, which according to [10] stands out
as an excellent feature for prediction due to the abundance of local tactical sequences, but
is of dubious value for play because it encourages the resulting player to passively react to
the opponent rather than to take the initiative. The box plots7 in Figure 3 (left) compare the
performance of the system at different stages of the game. The system performs extremely
well at the early stages of the game where moves more commonly correspond to standard
plays. The system ranks about 50% of expert moves first during the first 30 moves of
the game. Figure 3 (centre) together with Figure 3 (right) provides an explanation of the
excellent early-game performance: The system is more likely to match larger patterns with
better predictive performance earlier in the game. Figure 3 (centre) shows that for the first
30 moves we frequently match full board patterns (size 8) which correspond to standard
Fuseki (opening) moves. For the next 30 moves we still often match large patterns (size 6
and 7) which correspond to Joseki (standard corner plays). In fact, it can be argued that the
system has learnt a great number of these opening patterns by the systematic assignment
of values to move-patterns. Later in the game we match only smaller, less discriminative
patterns (as seen in Figure 3 (right)) and hence the prediction performance decreases. Note,
that in almost all cases where we match a full board pattern the resulting ranking gives a
perfect prediction of expert play. There is also a strong dependence of the ranking accuracy

6The GoGoD database, April 2003 (http://www.gogod.demon.co.uk).
7Lower and upper sides of box: quartiles; vertical line across: median; width: number of data;

whiskers: approximate support; dots: outliers.
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Figure 4: Box plot of the test rank er-
ror (on 500 games) for consecutive in-
tervals of µ. The dotted horizontal line
marks 50% rank error which corresponds
well with the mean µ = 0 of the prior
distribution over score values of moves
as indicated by the dotted vertical line.
The plot indicates that only expert moves
for which the system found a mean of
µ > 0 are suitable for prediction better
than random.

on the mean score µ (see Figure 4). In fact, during play we can use the fact that only for
patterns with µi > 0 the prediction performance of the system is better than random. If a
low µ is assigned to an expert move there were presumably many alternative moves with
comparatively low µ on the board that make the identificaiton of the expert move hard.

We also tried out the ability of our system to play Go. The system currently does not excel
in its playing strength due to its complete ignorance with respect to tactics. However, it sur-
prised the authors with remarkably accurate and human-looking moves. Remarkably, the
system appears to play “better” against better opponents due to its roots in expert patterns.
The reader can get an idea of its playing style from the diagram in Figure 5.

5 Discussion and Conclusions

We present an application of Bayesian ranking to the problem of move prediction in the
game of Go. Despite its rigid pattern definition the prediction performance of our system
matches that of state-of-the-art pattern matching systems and—to a certain degree—is ca-
pable of capturing the notion of “urgency” by simultaneously considering all possible legal
moves at any given time. Since we maintain a probabilistic ranking over patterns we can
use our system both as a tutoring/study tool for Go players and as an efficient move selec-
tion mechanism for tree search or biased Monte Carlo Go [4]. Tracking the uncertainty of
pattern scores provides our system with the added advantage of associating a confidence to
the prediction of the expert move. The proposed move prediction algorithm is fast (despite
the significant memory footprint due to the pattern database in memory) and we are cur-
rently working with MSN games to incorporate it as a server-side Go AI into their service
(http://zone.msn.com/en/root/default.htm).

The version described in this paper is already based on an impressive training sample of
20, 000 games (≈ 5, 000, 000 moves) played by expert Go players. This limits us to
1, 000, 000 harvested patterns; otherwise the number of training example per pattern would
be too small. Our future work aims at building a ranked pattern database from 1, 000, 000
games (≈ 250, 000, 000 moves) played between Go players of varying strength, which the
system can model by varying β. Since in non-opening configurations mostly small pat-
terns (α ∈ {1, 2}) are active, another fruitful research direction is to encorporate context
information into the small patterns to broaden their horizon.
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Figure 5: Diagram of the first 50 moves in
a match of the Bayesian pattern ranking sys-
tem against itself. Up to move 38 the game
develops along standard Fuseki lines. In
the remaining moves, a fight develops from
White’s attack on the Black group in the top
right. Some of the pattern system’s moves
look surprisingly insightful despite the fact
that they are only the result of local pattern
matching and evaluation. Not surprisingly,
the system wins the game.
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